
CONTRACT No. NONR 839 (39)
PnPOcrT No. NR 064-167

tii

"RING-STIFFENED ORTHOTROPIC CIRCULAR CYLINDRICAL

SHELL UNDER HYDROSTATIC PRESSURE

by

Kempner, Joseph, Misovec, A.P. and Herzner, F.C.

POLYTECHNIC INSTITUTE OF BROOKLYN

DEPARTMENT
of

AEROSPACE ENGINEERING
and

APPLIED MECHANICS Reproduced From
Best Available Copy

MAY, 1968

DIUTRIUUTION or THIN
DOCUMENT UNLIMITED CLE AR I N PIAL REPORT No. 60-10



Contract No. Nonr 839(39)
Project No. NR 064-167

RING-STIFFENED ORTHOTROPIC CIRCULAR CYLINDRICAL

SHELL UNDER HYDROSTATIC PRESSURE

by

Kempner, Joseph) Misovec, A.P. and Herzner, F.C.

Polytechnic Institute of Brooklyn

Department of

Aerospace Engineering and Applied Mechanics

May 1968

PIBAL Report No. 68-10

Reproduction in whole or in part is permitted for any purpose of the United
States Government. Distribution of this document is unlimited.

Reproduced From
Best Available Copy



ABSTRACT

A ring-reinforced, orthotropic circular cylindrical shell subjected

to external hydrostatic pressure loading is investigated. The stresses and

def'eaLions thruuyhout the shp~il are determined by a shell theory which con-

siders the combined and separate effects of large rotations, transverse shear
II

deformation, initial deflections and Flugge type thickness terms. The ring

deformations are described by both a deep ring theory and a plane strain

analysis. The results are used in the development of pertinent design for-

mulae. Numerical results applicable to a typical glass-reinforced-plastic

shell indicate that the nonlinear effects may be accurately provided for by

using a perturbation solution. Hill's criterion for yielding of an orthotropic

material as well as an analysis to approximate the actual stresses in the con-

stituent materials of a nonhomogeneor; shell are also applied.
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LIST OF SYMBOLS

A parameter measuring higher order effects in

governing differential equation, Eq. (2.4)

A, B arbitrary constants of integration in Lame

analysis of ring, Eqs. (3.10)

A x A 9, B x BP constants in elastic law relating stress re-

C, PCx C x sultarits to strains and curvature change, Eqs. (2.13)

Af cross-sectional area of ring frarne, Eq. (3.3)

parameter measurinq coupling of beam column

effect with transverse shear effect, Eq. (2.4)

C 1, 2 , 3 , 4  arbitrary constants of integration of solution

to governing differential equation of deflection,

Eq. (4.7)

OD axial flexural rigidity of shell, Eq. (2.17)

*i
modified flexuiral rigidity (includes Flugge
and nonhomogeneous effects), Eq. (A.28.)

E E rmoduli of elasticity in axial and circumferential

directions, respectivel y

E, E modified elastic constants, Eq. (A.28)

Esf, E circuriferential and radial elastic moduli of.
ring, respectively

Fs circumferential forcki acting over ring cross

section, Eq. (..)



F

FI, F2, F3 F4, F5  functions of shell material, geometry and load,

Eqs. (4.12)

G transverse shear modulusxz

G modified shear modulus, Eq. (A.28)
xz

K1,2,3_ constants measuring ratio of ring deflection to

interaction pressure corresponding to ring theory,

isotropic and orthotropi'. Lame analyses! respectively

L length of unsupported shell between rings, Fig. I

Lf center to center distance between rings, Fig. I

L effective width of shell plating, Eq. (6.10)
e

M xaxial bending moment per unit circumferential length

N axial force per unit circumferential length

N circumferential force per unit axial length

Q transverse shear force per unit circumferential

length

Qf Q evaluated at the frame (i.e., at x = ± L/2)

Qf equivalent radial line load (per unit circum-

ferential length) on ring, Eq. (6.2)



Qh equivalent line load on section of shell in

contart with frame, Eq. (6.6)

R radius of datum circle in ring, Fig. I

Rradial coordinate, Fig. I

0) R radii of outer and inner i ng surfaces, '~ee~•y Fig.I -]

Ro•' R!l radii of interior surfaces of outer and inner,

flanges of ring, respectively, Fig. I

R cradius of surface of contact between ring and

shell, Fig. I

W(x) nondimensional shell deflection paramneter, Eqs. - •

Wm Wf Wat midbay and frame, respectively

Yxý Y (P Y z Y zx axial, circumferential, radial and transverse

shear yield stresses, respectively

z radial ring coordinate measured positive inward

from ring "datum circle, Fig. I

a rran shell radius, Fig. I

a., ax bp~ constants in elastic law relating stress resul-

bxY d x tants to strains an. curvature change

Cb faying width of ring, Fig. 2

b' width of ring, Eq. (3.3)



b width of ring web

bo, bi widths of outer arid inner flanges of ring,

respectively, Fig. 2

b' b -b
0 0 W

b! b. -b
I I w

co nondimensional geometric ring parameter, Eq. (..)

d depth of the ring cross section, Fig. 2

t plastic potential function of the stresses, Eq. (7.1)

characteristic functions of shell differential

equatiorln, Eqs. (4.8)

jf, 9 4 f ,.haracteristic function evaluated at x = L/2

h shell wall thickness, Fig. I

''h, h. rad;al distanrpc from dett-1n circ to outer an'
U

inner surfaces of ring, respectively, Fig. I

p •xternal hydrostatic pressure

F0 ' Pop Pi, P' pressures acting on ring surfaces, Fig. 2

P axisymmetric buckling pressure of an unstiffened

orthotropic circular cylindrical shell under

axial pressure, Eq. (6.15)

Pcr axisymmetric buckling load of ring supporteC

orthotropic circular cylindrical shell under

hydrostatic pressure (6.16)

iA



PC interaction pressure between ring and shell,

Eq. (6.4)

- y(xz), py (xz) pressures required for shell to yield at the

position (x,z) predicted by Hill's criterion

and maximL. ,::ess criterion, r'..]

Eq. (7.-)

pya (x,z) approximate value of py (x,.z), Eq. (7.4)

P (x), Py (x,o) pressure at which yielding has penetrated through

half the shell thickness, Eq. (7.5)

dso, ds lengths of infinitesimal line element in shell

wall prior to and after loading, respectively

to, t. thicknesses of outer and inner flanges of ring,

respectively

u m axial displacement of shell median surface

U axial displacement of point in shell wail

w inward radial deflection of shell median

surface measured from median surface prior

to loading

initial deflection of median surface



w Ftinward radial displacement of ring outer

surface, Fig. I

ws Inward radial displacement of length of

shell in contact with ring

w particular solution of governing differential

equation

A'z ax'al and inward radial coordinates measured

from the median surface of the deformed shell

at midbay, Fig. 1

x' value of x at position of minimum bending

stress, Eq. (6.9)

z Iparameter

Inward initial deflection at midbay

AO initial deflection for which shell particular

solution vanishes, Eq. (4.2b)

A1 initial deflection for wiich the shell deforms

without bending, Eq I(.Oc)

A2  initial deflection for which interaction

prcessure vanishes, Eq. (6.4)

constants depending on yield stresses and

Poisson ratios of shell material

A(x) nondimensional shell curvature parameter,

Eq. .

A



Am, Af values of A at midbay and at frame, respectively

A, A ring-shell interaction parameters

parameter measuring higher order effects in

governing differential equation

cr values of ' at buckling load

a parameter measuring Flugge effect, Eq. (24).

a f3 nondimensionai ring-shel interaction parameters

P3C b c/Lf

7 measure of the beam-column effect, Eq. (2.4)

7 cr value, of y fot'khich shell buckles

Snondimensional load parameter, Eq. (2.4)

`xz transverse shear strain

=h/2a

8 internal or external ring indicator

exý e CP axial and circumferential strain components,
respectively

6x C 9 axial and circumferential median surface strain
components, respectively, Eq. (2. 12)



circumferential strein in the length of shell in

contact with the ring

C R radial ring strain

(:' •o) inward radial and axial coordinates, measured

from midbay at the median surface of a perfect
cylindrical shell, to points on the shell before

.(,erlosubscript) and afrter (one subscript) de-

formation, Eqs. (A.l), (A.1)

1]1,2 real and imaginary components of roots of

characteristic equation, Eq. (4.5)

4 2 *1/4
shell flexibility parameter (= L [hE 9/4a2 Dx/, Eq.

A 1 , 2 3,, 4  roots of characteristic equation

nondimensional ring material parvneter, Eq. (4.4)

nondimensioiai ring shell interaction parameter

V X9O V Px• v Poisson ratios of shell material

* modified Poisson ratio, Eq. (247)

V, fring Poisson ratios

sf f

nondimensional measure of the transvcrse shear

effect



Ox, o axial and circumferential shell normal stresses

Xb a axial and circumferential bending stresses

o0 , radial and circumferential normal stresses in

o' shell circumferential membrane stress due to

: 2 :Zaxial bending

TXz transverse shear stress

q, circumnterential cylindrical coordinate

waxial rotation (measured with respect to

initially deformed cylinder)
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I. INTRODUCTION

Attempts to design submersible vehicles capable of extended latcral

excursions at great depths have led to extensive research on ring-reinforced

cylindrical shells constructed of filament wound composites. This material is

relatively easl to fabricate and possesses a much higher strength-to-weight

ratio than the commonly used metals. The shells (and ring-supports) are formed

by winding strong glass fibers about a cylindrical mandrel and either impreg-

nating or preimpregnating them with an epoxy resin.

For many applications the shell material as described above may be

considered as orthotropic and nonhomogeneous through the thickness. For deep-

submergence vehicles the shell thickness must be relatively large in order to

withstand severe pressures. Observed shell failures indicate that transverse

shear may be a significant factor of the collapse mechanism (Ref. I). Further-

more, built-in outward initial deflections may enable the designer to utilize

the "beam-column" effect to strengthen the shell. Thus, the analysis presented

here considers the separate and combined influence of these effects on the

stress state of the shell.

Numerical results demonstrate that the more accurate calculation

of the cross-sectional area of the shell (which increases the axial stress

resultant) is the only significant thick shell correction. It is found that

the stresses do chanae when transversc sheai- ;b considered. However, the com-

parison made with the three-dimensional elasticity analysis developed in Ref. 2

indicates that no improvement is obtained by permitting transverse shear de-

formations.
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Because of the low radial yield stresses of the composite, yielding

(as described by Hill's orthotropic criterion) can begin well in advance of

experimentally obtained collapse loads. The elastic region is thus confined

to relatively low pressures. This, in turn, keeps the deflection small enough

to avoid any significant beam-column effects. Initial deflections, on the

other hand may be large enough to cause substantial beam-column effects even

at relatively low pressures. Thus, initial deflections could affect the

stresses and hence change the value of the load for which yielding begins.

To obtain accurate estimates of the stresses in the constituent

materials it is necessary to consider the nonhomogeneous nature of the

structure. When the stresses are thus obtained and utilized in a maximum

stress yield criterion, the yield pressures obtained are reasonably close

to the experimental collapse pressure.

The deformation of the reinforcing frames are, in general, adequately

described by ring theory (which permits only circumferential stress). However,

the frames of interest here are constructed of an orthotropic material for which

radial deformations may become significant. For this reason a more accurate

plane strain analysis is performed, in addition to the ring analysis, and a

comparison is made for internal frames of rectangular cross section. Excel-

lent agreement is found for a particular ring considered in this work.

Designers of present day submersibles are familiar with the for-

mulae first developed for thin, isotropic metal shells by van Sanden and

Gunther (Ref. 3), which were later modified by Viterbo (Ref. 4), and finally

by Pules and Salerno (Ref. 5). The results presented here represent an ex-
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tension of the work of Ref. 5 in that the formulae obtained therein for use

of metal shells are modified to include rore complicated filament wound com-

posite shells. These include solutCnos for various stresses, points of

minimum bending, ring-shell interact_:n pressure, axisymmetric buckling

ioads, effective width of shell p]at'ýn, stress in the reinforcing rings,

yield lressure and the location at yh yielding begins.
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2. Governing Shell Equations

The differential equations of equilibrium of a circular cylindrical,

orthotropic, ring-supported shell subjected to hydrostatic pressure loading

are found to be [see Fig. I and Appendix A; Eqs. (A.20), (A.31) and (A.33)]

+ 4(I9/L) 2 (A/B)wx + 4(9/L) 4 wl/B (4A/B)wSXXXx = (47/B)O'xxxx

- [ 4 7(O/L) 2/BJw + 8(/L)27[ I-(v /2)(14,')]/aB(l+b) (2.1)

,x =eW5 'x-4g(e/L) w÷8y'[1-(vqK/2)(I+6))/a(l+6)-47ewo0 xxJ/(l+2caý) (2.2)

The associatedconditions at the shell boundaries x 1/2 are

w ws = wR (2.3a)

In Eqs. (2.1) to (2.,3) w it the inward deflection of the shell median surface

from the initially deformed shape and cu is the additional rotation of the

median surface normal about a circumferential tangent; wR is the inward

radial ring displacement at the- contact surface bctwe•,- the ring and the

shell and w5 is the inward deflection of the section of shel] in contact with

the ring.
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Also,

4 2A = 7 ,+ a B 4A ( 7 "ICA)/I hEp/4.a ux

7 - D -N 'OL = (OL 2Pc*hG"'

2 6 = h/2a (2.4)

The quantities E9P, Dx, Eq. and Gxz represent standard stiffness parameters

of a shell whose material properties vary through the shell. thickness h [see

Eqs. (A.28)]; a is the average radius and L is the length of the unsupported

shell (see Fig. I). N is the axial stress resultant, which for this problem

was found to be closely approximated by the constant (see Eq. A.26)

N - (pa/2)(l + 6)2 (2.5)

The parameters 7, 9, c and 6 represent the effects described in the introduction;

I. 2; 0 7 , y 0 Beam-Column effects neglected

2. 9 0 Transverse shear deformations neglected

II

3. ax a lgethcn termis fic.glected,

Hence, in tho analysis which follows it is possible to evaluate the individual

and combined nature of these effects. In Appendix A the necessary procedures

required to reduce the governing equations (2.1 and 2.2) both to those obtained

in Ref. i and to those deduced in Ref. 6 are discussed.
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Since condition (2.3a) depends upon the ring support, the ring-

shell interaction problem will be investigated before a solution is attempted.
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R. RING-SHELL INTERACTION

The rings considered are assumed to be constructed of a linearly

elastic homogeneous material and to have cross sections of the generalized

"I" type.. If a ring is assumed to resist its loading with only a circum-

ferential stress, the corresponding strain is

s= - wp/(R - Z) (..)

where wR is the radial displacement (positive inward); R i's the radius of

a datum circle. Z is the radial coordinate measured positive inward from

the datum circle. The circumferential stress is given by

C5  Efs = -(Efw )/(R - Z)

E is the modulus of elasticity in the circumferential direction. The cor-
s f

responding hoop force is

h.

Fs = h 0 sb(Z)dZ - E fAfc(wR/R) (3.5)

0

where b(Z) is the width of the ring at Z; h and h. are the radial distances
0 I

from the datum circle to the outer and inner ring surfaces, respectively,

and Af is the ring cross-sectional area. The nondimensional parameter c' is

defined by

h.

c, b(Z)/(R- Z)dZ (3.4)Af -ho

0
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and depends only upon the geometry of the ring cross section. Appendix B,

taken from Ref. J7., evaluates c' for different types of '7j" ring cross

sections.

The hoop force F acting on the ring is easily obtained by cutting

the ring in half and finding Fs necessary to maintain equilibrium (Fig. 2b).

This leads to

h -t h. h h. -t.
F = R•p'obo'( + + pibi( I p 0b (1 + _.o) - pb( -I(

5 00 I 00 R(5.5a)

where

b' = b - b (3-5b)
0 0 W

bi " bi - bw (3.5c)

bW is the web width, b and b. are the outer and inner flange widths, res-

pectively; and to and ti are the thicknesses of the outer and inner flanges,

respectively. Po) Po', pi, p! denote pressures; the subscripts o and i de-

note the outer and inner flanges, respectively, while the prime superscript

denutes the surface of the flange nearest to the datum circle (see Fig. 2_.

If the frame acts on the inner shell surface,

Pi P! = Po = 0 (3..6 a)

Po PC (3.6b)
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b =b (3.6c)

If the frame acts on the outer shell surface,

P = P Po p. (3.7a)

Pi =PC (3.7b)

b b. (3.70)
C I

P is the interaction or contact pressure between the ring and
C

the shell. bc is the faying width of the contact surface between the ring

and the shell.

If F is eliminated between Eqs. (3•.5a) and (3.3), a relation be-
s

tween the radial ring displacement and pressure loads is found

w - R[poR'b° + piRibi poRobo-'p!bi'R!]/(EsfAfc') (3.8a)

where

= - (3.8b)

R R + t1  (3.Bc)

and R and Ra Ire the radii to the outer and inner ring surfaces, respectively.
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A more accurate description of an,,orthotropic ring of rectangular

cross section may be obtained by permitting radial strains in addition to

hoop strain via a Lame plane strain analysis. The field equations necessary

to describe such ring deformations are

e = - wRR (3.9a)

es = " wR/A (3.9b)

CR = (ar - VRs fa)/ERf (3.9c)

(a - VsRR)/Esf (3.9d)

(ROR) R o = 0 (3.9e)RR S

R is the radial coordinate measured from the center line of the ring, ERfL

E sf VR sf, VSRF are the elastic constants of the ring. The solution is

oR = Er- A( V 1 V~f )R I + B(X - V sR f )RW /(1 - Vf2) (3.lOa)

f .. ft

wR AR• + BR' (3.lOc)

where, for an Internal frame
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[P pc (l-Vf 2 )R l0 +X /[E Rf(X+VsRf)[I-(RI/Ro)2 2% (3.O1d)

S[PC(/-vf2E (0+j/5 Rf('-VsRf)[(R 0 /3. lk( e)

2

2 f/ER (3.1l0f)

Vf 2 VsRfVIsf (R 109)

Thus, for an interral frame the relation between interarz ion pressure

and the radial displacement of the frame outer surface is expressed by

(f,ý f wR/PcRo)=Ix 2 (1-V f 2) I (>-VsRf) + (X+vsR ) (I-d/Ro 0'

f T

" (X.+Vs ) (X -V R)[I-(I-d/Ro) 2kjj K3 (3.11)

where d ib thv depth of Lhc: ring cross sec(t ion.

For an isoLiOpi• material

(Esf'R/PcRo) =[O(-vf)+(l+vf)(I-d/Ro0 ) ]/[1-(I-d/Ro)2J = K2  (3.12)

For an internal, rectangular cross section frame, ring theory gives

"see Ea. (•R'i

(Esfw<PcR/ ) = = (2-d/R 0 )/((d/R )[2+(I/6)(d/R) 2(I-d/R0 ) 2'1 K1 (3.-13)
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A coiparison of the two solutioms may be obtained from Eqs. (3.12) and (3.13)

I - (K2 /K 1) V(d) + O[(-)2j (d. ))

Thus, for thin Isotropic rings the two solutions are in very good

agreement. Furthermore, when the orthotropic Lame solution, is compared

with the ring solutiorl the agreement is even better for the particular shell

examined in this work.

The radial ring displacement and shell deflection musL be matched

at the shell boundaries. Because the shell theory used here cannot describe

the radial changes in stresses that occur in the 5hell region in contact with

the ring, that length of the shell is treated separately with a simple analysis.

Since the ring and shell are bonded together, and classical ring theory does

not provide for distortion of the ring flanges, the assumption is made that

the portion of the shell in contact with the ring does not bend. With this

assumption, equilibrium of radial forces leads to (see Fig. 2c)

beN5 - 2Afa + [(0+6)p6•'+ (1+6-26 ")pc]abc = 0 (3.15)

where

..l for iInternal frame

O for external frame

(continued on next page)
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b for internal frame
b ={b. for external frame (3.16)

and from Eq. (A.27b) and the above assumption

w
2-=- (N~ - v'ýNX)IhE 3.7

Combining Eqs. (3.15) and (3.17) to eliminate Ns yields

W (a 2/hE)[ (l1+)p6,' + P (1+6-26'•) - (2Q-f/b + j(NI/a)] (3.18)

The matching conditions are that

WpR = ws (3.19a)

Ws = wf (3. 19b)

Equation (3.19P) is used to satisfy the boundary condition Eq.

(A.20b). Eq. (3.19a), combined with Eqs. (3.18) and (3.13), leaves an ex-

pression for the interaction pressure in terms of quantities which can be

determined from the shell solution

PC = 13*)V-(2Qf l + (N./a) + p 1 +6)8 +A-

where
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X = (/aC)(l-6)[(Af/bcR) 
- I]

c= bb/Lf

Ocý = ( E A' a 2 ) / (E£*h LfRR)

Lf = L + bc

R for internal frame

c . for external frame

13c = (28'-])• (cz + 15c) - Otc8 (3.20)

The N term in Eq. (3.17) corresponds to the "Viterbo effect"x

(Ref. 4) in that it accounts for the two-dimensional nature of the stresses

in the straiqht section of the shell adiacent to the ring.
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4. SOLUTION OF GOVERNING SHELL EQUATIONS

The solution of Eqs. (2.1) and (2.2) subject to boundary condition

Eqs. (2.3) can now be obtained. Lunchick and Short, Ref. (8) suggested that

the initial deflecticons encountered in isotropic metal shells could be approxi-

mated by a simple parabolic function which would ensure constant axial curve-

ture. This form is assumed here; thus

w= Ll - 4(x/L) 2  (4. 1)

where L is a constant equal to the largest value of w0 (at midbaV). With

the type of initial deflection described in Eq. (4.1), a particular solution

to Eq. (2.1) is

- 2w = 8(A - 7A p)/1 (4I.2a)wpp

where

AP - L2  - (v' /2)(i + 6) 1/4a(I + 8) (4.2b)

If the complementary solution of Eq. (2.1) is assumed tu have the

form

W x (4.3•)
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The characteristic equation becomes

x + I&(e/L) 2(A/B)X2 + 4(8/L) 4/B = 0 (4.4)

with the four roots

X1,2, = 3 4 (e/L)f/B (4 ..5a)

or

X.,2,3,4= 2(e/L) ( '7 + if 2 ) (4-.5b)

where

'1,2 = . (4.5c)

4 = Ai/B (4.-5d)
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Numerical results demonstrate that for the range of J and Ca

of interest in this report, the shell reaches a yield condition while

27 and a are in the region defined by # < I. Moreover, in this re-

gion the following special cases can be obtained:

1. Neglect beam-column effect by setting 7 = 0

2. Neglect transverse shear effect by setting • = 0
Is

3. Neglect Flugge type corrections by setting a = 0 and 8 = 0.

Therefore, the only solution considered in this work will satisfy the in-

equalities 0 < *2 < I and B > 0. The final form of the solution depends on

whether;

B >0 (4.6a)

(4.6b)

or

0 < 2 < (.6c)

Thus, the solution of Eq. (2.1),, can be written in the real

form

w(x) = w pl + E cigi(x)] (4.7)

where

gI(x).= sInh(2 1 61ex/L)cos(2jf2ex/L)

(continued on next page)
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g2 (x) -, sinh(211 Ox/!L)sin(2ýl2elx/L)

g3(x) - cosh(2 1iex/L)sin(2 2&x/L)

g4 (x) = cosh(21J6ex/L)cos(2 f 2 x//L) (4.8)

ci represents four arbitrary constants of integration. Syrmiietry demands

that (see Fig. 1)

cl = c 0 (4.9)

The constants c 2 and c4 are determined by using the boundary

c-onditiosns defined by Eqs. (2.3) in conjunction with Eqs. (3.18), (3.20),

(A.34), (A.35), (4.2), (4.7) (4.8), and (4.9). Hence,

C 4 =- -'~)/~ -(
4 .10a)

where

15 8 OcG2/[0 +Gil I-0c) [c (1+5-25")ac1/13c) (4.10b)

PAA +L 1+(1+5-2l) (lCloA),I 6'-(v /12) (1,6)

+ azx"[•I+)j• • (4.10~c)
c

Also,
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c 2 /c 4 = 4C 4 /G2 ) + ',"]14BI T 2  (4.11)

where

G= (4/0)(9 2 2 )g]( i0B (4..12a)GI=(1 ) 'g30+g9, )/[ (B I /Tl(5909 4 2/ (g3og40"g1og2o)j

G2 = ((BI/ql)1 0o+(B 2 /1 2 )9 3 0 ]/[ (B1/1 1)(g 3 0g20 +g10 94 0 )+(B 2 /T 2 )(g 3 og 4 0"glog2 0 )l

(4.12b)

G3 = 1 (11T12) (940g9N-910920) (B+4"')-(I/TIl) (930g20+g9og40) (2+4-% 1/ (B/Ig 092

+ 9 10 g4 0 ) + (B2 /1q2 )(g3 0 g4 0 - giog20)] (4.12c)

G4 = [(Bi/rtI2 )g30 - (B2/'iI)g 1 0]/[(BI/rl1 )(9309 2 0+g 1 0 g 4 0 )

+ (B2 /Y12 )(93 0g 4 0 -9 1 0 g2 0O) (4.12d)

B1 = I - 2,[2. - 2a - (1-25.)] (4.12e)

B2 = I - 2t[2. - 2c, + (1+2t)] (4.12f)

9!O,920 13,4 =1(L/2),92 (L/2),g(L/2),,g4(L/2) (4.129)
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The function G(3 is presented 3rermaturely here in order to list

the completce set of Gi. which is used subsequently. The functions are

similar to those plctted as functions of 7 and 6 for the isotropic case

[see Ref. 5 and App. D, Eqs. (0D2)3, where the effects of transverse shear
II

and Flugge tLrm5s were not considered (i.e., 6 = 6 = cr = 0). When these

effects arL accounted for, these functional relationships change in that

G = Gi(7, 0, t, E, 0-.

It is interesting to note that in their wrk on isotropic shells

Lunchick and Short, Ref. (8), neglected transverse shear effects and found

a "critical" initial deflection parameter such that the shell deforms with-

out bending (i.e., wo = 0). This parameter, modified here to include

orthotropic effects and thick-shell terms, which results from consistently
II

maintaining Flugge accuracy, is now given by A1 [Eq. (4 .lOc)].

The deflection may now be expressed as

G 4
W L8(m-•Ap)/e][ I-[ (;,A--AI) (A-2'W)[ 4 (x)+( 2 (x)/4Br13r1 2 ) (_ + ý)]A "

(4. I+)

and the change in curvature as

2 G G,12 ~ ~ G -G4 +01a-()AB( = 32A-/L (-/AYA. f -[(•1 G __+ 1)/2 + E -+)][c.(x)/4BnJS...........2 "2 .

G4
+ (2 - t)4(x)/(I + 2o)) (4.14)

2
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The shear stress resultant at the frame is obtained by combining Eqs. (A.27c),
(4.1o), (4.13) and (2.3b). Hence,

Qf/Nx =BG2L [(7/7)A - All
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5. STRESSES IN SHELL

The stres•-dibplacemen• relations are obtained by combining Eqs.

(A.5), (A.21) and (A.23)j hence,

oYx = [E x/(-v2 )JCx -v w/(a-z) - zwY ] (5.1a)

t - [E 1(l-v 2)][-wl(a-z) + vxq)(e o-zc x)] (5-lb)

From Eqs. (2.11a) and (2.17)

Ity (l/ax)[Nx + • (w/a) + b ,a) (5.2)

It should be noted that the entire analysis to this point can be

applied to a shell which is inhomogeneous through the thickness. In an actual

filament wound composite shell, the elastic constants are discontinuous functions

of the thickness coordinate z; hence, the actual stresss are discontinuous

functions of this coordinate. In the present analysis the less complex state

of stress in an equivalent homogeneous material will be computed. The stresses

in the actual (nonhomogeneous) shell are approximated in Appendix E, in which

suitable multipliers (stress concentration factors) are utilized.

Equations (5.1) and (5.2) combine to yield, for a homogeneous material,

x h 4 6 2 "8 2z )A
I-- , + 1, (5.3a)

N - hh

2
'7 • + 25 8 -• (z-)
N = - h/ lv2 ' n 2z-) A' (53b)
Nx - xq 1- 2 (•-)3 h

where

W(x) = Exw(x)/Nx (5-3c)

A(x) = [Exh 2 /2(l-v 2 )Nx.Jm(x),x (5-3d)X X x



The shca- stress is assumed to be parabolically distributed acr'oss5 the

shell thickness, i.e.,

' (Q/h)[1 1 4(z)
•z 2 h

Thus, the maximum shear stress occurs at the median surface. At the

frame, this stress is

"rxz f.h= 6G ) AN m [/t -, A

The direct stresses can be separated into ther memib-ane and bending components;

thus,

x membrane

) = -• 2 ( (5.6c)

(4V W + A)(2z/h)
N L--- -q-

a 2z )
=-v W + P. h) 

(5-6d)

b Sending vx(l-2)

in which the approximation that
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I 1 + 2( (5.6e)
1 - 26(hZ)

has been used. A shell subjected to the symmetric type of cuad-support syste5;,

described here will usually develop its largest stresses either at ridbay or

at the frame. Therefore, the computations in this work will be at these stations.

Hence, it is convenient to list the nondimensional parameters

E a(b)(2%A - A -,,= 2 -ý( r. (7

m (a) ) -6 2G 2  (5,7b)
Fri L )E h h

a•' Ig_2c [ h G - 2•) ](5.7d)

h7 43,

, "d V 2 '1p)

where the subscripts m and f imply that the function is calculated at tne

rnidbay and frame shell stations, respectively. The stresses can be zalculoted

by substitutin2 Eqs. (5.7) into (5.3) [or (5.6), if the membrane and bending

stresses are desired].

The bes.pcolur - term ad in the absence of transverse shear and

initial deflections, has been shown to have little effect on the stresses

in the primary region of interest [see Ref. 71. However, the combined



effects of beain-coIun-, and initial deflecti on terms (• A), or of beam
7

column and transverse shear terms (M, 0), can be substantial. This can

be seen from an examinat ion of Eqs. (.57) and (5.6). For exa.ple, the

bending stresses become extrunely small in the neighborhood of A I A (they

vanish when Flugge terms are neglected). When transverse shear deformation

is considered the bending stresses may be considerably affected, depending

upon the magnitude of {.
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6. DESIGN FORMULAE

The shell stresses atid deflections may now be utilized to develop

convenient formulae for several quantities which may be of interest to the

designers.

A. Circumferential Normal Stress in Rinq

Combining Eqs. (A.26), (3.2), (3.19) and (5.7c) yield the follow-

ing expression for the circumferential normal stress in a ring:

as = -(E Pf/Ex)(Nx/h)[Wf /(F" - Z))

N a2l 2  -

=-(-z) " ( 2 -')A" (6. 1)

B. Equivalent Line Load on Ring

If a line load Qýf acting at the ring datum circle is made stati-

cally equivalent to the total inward radial load acting on a ring segment,

then radial equilibrium gives

Q = -F/R (6.2)

Then Eqs. (6.2), (3.3), (3.4) and (6.1) combine to yicld

N 0

AN " (a (f 32 - )A']) (6.3)

E R

where Q fis chosen positive in the inward radial direction.
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C. InteraGtion Pressure

The interaction pressure may be calculated froi. Eqs. (3.20) and

(4.15). Hence,

*= L - (6.4)
Pc " p(]+) (Cc/c) L2 8~ G 2

where

A Ao - L2 cB[8* - (v* /2)(l+6)]J/ 4 a(l+6)(I-$ )G

- X * L 2/ 4 a(l+6) 310 + BsC/O(-Bs)G 1  (6.5)

Thus, for a large enough outward initial deflection (A2 ), the interaction

pressure vanishes and the frame would be ineffective.

D. Equivalent Line Load on Effective Ring

The line load acting on the section of shell in contact wiLh the

frame is defined to act at R and to be statically equivalent to the radial

loads acting on this shell section.

Qh ý (abe/i)[p"' .- p,[26 - (10)1 - (2Qf/bC)1 (6.6)

where pc and Q0f are obtained from Eqs. (6.4) and (4.15), respectively.

If the ring and the section of shell attached to it are considered

together as an "effective ring", the line load acting at Riwhich is stati-

cally equivalent to the applied radial loads is obtained from
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Qc= 0.f + Qh(6.7)

E. Axial Location of Vanishing Curvature Change

It may be ot interest to the designer to know positions along

shell generators at which the bending stresses are negligible. An inves-

tigation of Eqs. (5.6c) and (5.bb) reveals that the bending stresses be-

come higher order when the change in curvature vanishes, i.e., when

A= 0 (6.8a)

or

= 0 (6.8b)

Equation (6.8b) and Eq. (4.14) then combine to give the equation to deter-

mine the point x' at which the change in curvature vanishes. Hence,

-(1/48TI11 2 )t[ (G4 /` 2 ) + 11/2 + t[(G4 /G2 ) + J]1g 2 (x')

+ [(G 4 /2G 2 ) - t]g4 (N')1 = 0 (6.9)

x' must, of course, be obtained by a numerical procedure. It is noted that

when beam-column effects are considered, x' varies somewhat with 7. There-

fore the location at which bending is minimized (in the above sense) varies

slightly with applied pressure.
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F. Effective Width

If, as in some ring stability analyses, the entire structure were

thought of as primarily rings with modified flanges (i.e., the shell skin

is treated as an additional flange on the ring), then it is of interest

to establish that axial length of shell which may be used as an effective ring

flange width. ihe criterion used to determine this "effective-width" is

(see Ref. - )

' L L/2 ,

L (2) L N (x)dx = LN (6.10a)Le~q) L/2 (average

where

I

L is the effective width. N is the resultant of the modified circum-

ferential membrane stress a '(x) which, in turn, is that portion of the

circumferential membrane stress which ih due to axial lbending. a(A) is

obtained by omitting terms which did not arise from axial bending considera-

tions from the stress given in Eq. (5.6b). Thus, from the circumferential

membrane stress one must subtract the hoop stress of an unsupported cylin-

der under hydrostatic pressure p; this leaves oa,(x) as that part of the

shell membrane stress which is caused by the ring (which causes the axial

bending). Hence, from Eqs. (5.66), (5.3c) and (4.13)

h v 8E (.1

N8 2~ 6NX
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Considerations of overall equilibrium of a shell loaded only by the inter-

action pressures leads to

L N =p b (I - 6 - 26") (6.12)S'average

Therefore,

L e = (p cb ch/N x) (1 -6-26*') /[ (v q~Xh/v xPa) (W f+BE xTAo/N x 02 ) -6f/3)

(6. 1•a)

II !

When transverse shear, initial deflection and Flugge effects are neglected

O = 6 = = 0), this relation reduces to ORef. 7)

LP = LG + b (6.13b)

G. Axisymmetric Buckling Loads

Axisymmetric buckling of a long, unstiffened, orthotropic, circular

cylindrical shell would occur either at

(6.14a)

or

B B Cr 0 (6. 14b)

depending on which of the above conditions occurs at the lowest 7 (see

Appendix C). When •he transverse shear parameter t is relatively small
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(GAz large) the criterion for buckling of an unsupported, infinite length

shell is given by Eq. (6.14a). From this, the axisymmetric buckling load

is

,IhE ex
p = ( I + 4§o - 2- (when 1 - 4J+ > 0) (6.15)

a (1+6)

The ring-reinforced shell, due to its greater rigidity,

possesses an axisymmetric critical load p tr in excess of that of an

unstiffened shell, i.e.,

Per > p or 7cr > 7 or 'cr > 1 (6.16)

At the buckling load, the deflection becomes infinitely large.

Examination of Eqs. (4.13) and (4.lOb) shows that this occurs when

c " c c° 0 +1 6- .6 '~ Al it• ,•
C. ~ l )2 4. 1. -1 In••c•••• .,

However, since *cr > 1, G, in its present form [see Eqs. (4.11d), (4.11c)

and (4.7)] is a function of imaginary quantities. In order to avoid this,

the buckling criterion is rewritten in the form

S+ G (lPc)[p* + (1+6 - 26")c ]/PC = 0 (6.18a)

where
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cos - cos2(T120)

1-- sin(TO1e)cos(TýJe) + *- cos(T72 e)sin( L2 e)1[I-2•,2•-c))

(6.18b)

is obtained by setting

!m = - iT~1 = • - 1/(2/B) (6.18c)

in the equation for G,'

If, as occurs often in practice,

<'c < < a < 1 (6.19a)

The buckling loaa cdn be arproximated from a numerical solution for cr of

Q (2K - 1 ) + 0 (6.19b)

If more accuracy is desired, the solution of Eq. (6-19b) may be

used as a first approximation in an iterative solution of Eq. (6 .18a).

For a rigid frame (shell has clamped ends) a -c . Therefore,

in order to fulfill the buckling criterion ( 6 .18a)

G -. -O ( 6 .20a)
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This requires that [see Eq. (6.l8b)

-'i" sin (TO)cos(7l8) + cos (T ) s in (6.20b)
72 os7 2e inr 0

T1 
2

It is noted here that the results presented in this section are valid for

both internal and external rings.



7. YIELD CRITERIA

The collapse mechanism of filament wound composite shells is not as

yet fully understood. Experiments indicate that collapse oczurs near

the frame before the buckling pressure is reached [Ref. I ]. Although

the severe delamination noticed in ruptured shells indicates an ultimate

shear failure, the prevailing opinion seems to be that collapse occurs

after a ccmplicated sequence of the combined effects of yielaing, local

instabilities and crack propagation.

It is not the purpose of this work to develop a mathematical

means of describing the collapse mechanism, but rather to describe the

stress state while the shell material behaves as an elastic continuum.

It would, therefore, be advantageous to have some idea of the range of

pressure for which the linear elastic laws are applicable.

In Ref. Il , R. Hill developed a three-dimensional yield

criterion to be used on orthotropic materials. He introduced a 'plastic

potential" function of the stresses which, for an orthotropic material

in a state of modified plane stress, with transverse shear, can be writ-

ten in the form

2
f (.R)2 + () aa (-I- + 2 + Zy (7r1)

Y Y xv~? 2'2 2
1P x x Yz YZX

where f is the "plastic potential" function, Y., YTY Y z and Yxz are the

respective axial, circumferential, radial and transverse shear yield

stresses. In Ref. 7 , in which a composite shell theory was developed
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without introducing effcc,.s oi transverse shear deforrnation,. the correspond-

ing form of Eq. (,.i), i.e., -rzx = 0, was employed.

The yield criterion is defined to be

f= 1 (7.2)

Eqiiations (7.2). (7.1) and (2.5) combine to give a formula for

the pressure necessary for yielding to occur at a particular position of

the shell. This "yield-pressure" may be calculated from

h
p Y(Y, Z) 2(- o h u h Y 2a h Y aý hrX1

Y2 NY N N

aoh oh 2 Th )2 12
+ (- -) 2) + (1-(7.3)

N N Nx x Xz X

When beam-column effects are cunsidered, the right-hanc side of

Eq. (7-'J) is dependent on p through the parameter ;. :n such a case the

eqUation is transcendental ;n py. A good first approximation for py may

E obtained by takiny 2 0 in thu right-hand side of Eq. (7-.3); then, if

more accuracy is desired, the pvriee... thus ob.a,•"ed couid be utilized

to int ;ate an iterative numerical procedure for a more accurate solutior.

Fiberglass shefl' are generally constrUcted so that the radial

directior is normal to evury filament. The radial yield stress (Y.) of

suc-h s.e; is is the relative I- small yield stretss of the resin. Thus, a

grood approyimation to the yiu-' p;'cssurc is 3iven by



py (x,z) 2(h) oh hT h

z (1+6) x x Xz X

since

2

(Yz/Yx) < <1 (7.4b)

and

(Y z/Y(P)'2 < <(7-4

The most severe stress situations usually occur either at mid-

bay on the outer shell surface, (x,z) = (0, -h/2), or at the frame on

the inner shell surface. (xz) = (+ L/2, h/2). The yield pressures cor-

responding to these positions may be calculated by using Eqs. (5.7), (5-4)

and (5.3) in Eq. (7. 4 a) or in Eq. (7.3).

An estimate of the pressure P (x) at which yielding has pene-
Yo

trated through half the shell thickness at midbay [see, for example, Ref. ,

could be obtained by neglecting the bending stresses, i.e., by using Eqs.

(5.4), (5.6a), (5.6c) and (5.7) in Eq. (7-.3) or (7.4).

The manipulations described above were carried out in Ref. .7,
II

to result in the following yield pressures when transverse shoar, Flugge,

and initial deflection effects are neglected:



i = + '2 (e 2E 1 2 E "+ (E4)+0EI G3 + 1/2PY(+~ ~ 2" 2 24 1 G3 + )E6 +2 I e.5)

(7.)a)

h( !2Lt G2 2

""2E, G G a a - 1/23• " e3i2`4 +2EG42 2 5 (e."F4 1G)]

(7.5b)

(0) (1[. + G2 (G2 .+ 1 )(+PYO a I 2" 5) (7 - "( c)

in which

( -
v

A +='c -l)+ G . c - _ _ ]
c c b Rc 0 -i2"• (7.5d)

o c( 2

y 2 2 22 (2.2e)
q Yx z

2 +

2 x2 y 2 (7.5f)
Y yz 2

- I - 2

x 2 2 -"2 (7.59)x Yqp Y

2 -3v Tx v 21-v

4 - 2 2 2 "
Y Yx Yz (7.5h)

x Y

y T yx2 y z2 (7 .5i)

2 ~(7-5.1)
(I- T;
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Note: for approximation (7.4)

"26 = ý (726a)

62=;P2 (7.6b)
12=2

Y
z

7K= 2 (7 .6c)
Y

z

The simplest failure criterion is the assumption that the

material fails when the maximum stress reaches the uniaxial yield stress

of the material. Referei)ce 7 al~o applied this criterion and

arrived at the following results:

L h Yx (!h--)

(+ h y a h

Py -L h . (7.7a)
1 2 ~-iE I1Q

Yh

py (0, - -) =a (7.7b)

"2 Cl 1 '4'
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8. NUMERICAL EXAMPLE AND DISCUSSION OF RESULTS

located at the Polytechnic Institute of Brooklyn. These calculations were

irtended to examine the separate and combined effects of large rotations
II

(beam-column effect), thick shell terms consistent with Flugoe accuracy,

transverse shear deformation and initial deflections. The particular glass-

reinforced-plastic, ring-stiffened, circular, cylindrical shell of interest

was one previously investigated by the David Taylor Model Basin [Ref. 15].

The properties of this structure are as follows:

Elaistic Constants [see Eqs. (A.21), (3.2), and (3.9)]

E= 4.74 x 106 psi E = 6.14 x 106 psi = 0.70 x 106psi

Vx=•= 0.136 vqx = 0.176

E sf ý 7.20 x 10 6psi (ExvWp = E(P, xq)) (8.1)

1he shear mo 6lus was not available and was taken to correspond to si(i)ar

structures listed in Ref. 11.

Geometr,.y,,(see Fiy. 1)

a = 3.194"
(continued on next page)
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h ý 0o388"

L = 1.273"

b 0.271"C

d = 0.542"

All calculations for stresses, deflections, contact pressure, initial

yield pressure and stress resultants were performed only for the case of the

internal frame of rectangular cross section.

Using this ring-shell structure as a standard, it was decided to
II

first neglect Flugge terms (6 = 8' = 0), transverse shear deformation (0 = 0)

and initial deflections (A = 0). The following three types of sample calcu-

lations were performed:

1) Shell structure as above; but, in addiLion, a shell of one-

half the original thickness was also considered (i.e., h = 0.q1W4). Ring theory.

Eq. (3.13), was used to describe the ring deformation.

2) Shell structures as in (1) but for isotropic -structural material

with E = = 5.39x 10 psi and v = 0.1548. An examination

of either the stress equations given in explicit form in Ref. 7 or Eqs. (5.3)

of the present report led to this sel-ction for an equivalent isotropic

material. Such structures could be analyzed with the use of Ref. 5.

3) Shell as in (2) but with a less stiff frame of modulus

E = E 5.395 x 106 psi equal to the shell modulus.
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The results of the above calculations are presented ;iF Tables I

and 2 and Figs. 3 through 10. The calculations in (2) and (3) were prompted

by the similarity which exists between the isotropic equations found, for

example, in Ref. (5) (using E = Fr, ) and the orthotropic equations

[see lVef. 7]" In the few cases considered, this procedure was justified

since, for both the thick (h = 0.388") and the thin (h = 0.194") shells,

the values of the stresses obtained for the "equivalent isotropic" and

the orthotropic cases agree to within 10 percent [see Figs. 3 to .6 1.

The stiff ring [Ef/E = 1.335 in Figs. .3 to 6. 1 caused smal-

ler circumferential stresses but higher axial stresses. The bending

stresses were higher for the stiff ring as expected [see Figs. 7. - I.. ],

and the corresponding yield pressures could be slightly lower.

It is evident from Figs. .3 through 10 that in the loading

region 0 < 7 <_0.4, the nonlinear beam column effect is small. However,

if a line is drawn at the origin tangent to the curves of Figs. S3 through

(10) (yielding the linear solution which neglects the beam-column effect),

it can be seen that some nonlinearities first appear at 7 = 0.25[e.g.,

see Fig. 7 ]. If 2' were taken larger than 0.4, the nonlinearities would

no longer be minor. Of course, for the cases considered, when 7 > 0.4,

p > 37,000 psi (for h = 0.388 in.) or p > 10,000 psi (for h = 0.194 in.)

and these ore_,ir&- are well bepyond the yield pressures that were obtained.

The yield pressures presented in Table 2 are those obtained from

Eqs. (7-.), (7.6) and (7-7). When the yield pressures were calculated

froma the approximatibn described in Eqs. (7.4) and (7.6), they differed

from those dete.riined by Eq. (7.5) by less than two percent. Thus, the
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low yield pressures obtained are caused by the small radial yield stress.

Hence, if the resin yield stress could be increased, there would be a sub-

stantial strengthening effect in that significant increases in initial

yield pressure could be realized.

The remaining numerical calculations [Figs. 11 through l] are

directed at investigating the effects of transverse shear deformation,

initial deflections and thick shell (Flugge) terms. The structure con-

sidered is basically that described in Eqs. (8.1) and (8.2). The ring

deflection is described by Eq. (3.11).

In the stress vs initial deformation curves [Fig. 11, 13 and 17]

the bending stresses can be obtained by measuring the vertical distance

between the outer and inner surface stresses, whereas the membrane stresses

are equal to half the sum of the outer and inner surface stresses.

When initial deflection and the beam-column effects are negligible,

the mei.ibrane stresses exhibit very little change with increased transverse

shear deformatior. effects [see Figs� 15 and 16]. However, the axial bendinq

stresses increase at the frame, anid decrease at midbay. The lowest (critical)

yield pressure decreases slightly (See Table 5). Although in general the

beam-column effect becomes more significant when transverse shear deformations

are considered (see Table 5), this effect remains negligible for pressures

below the initial yield pressure.

The infiuence of initial deformotions stems from beam-column effects.

Because of the very small deflections for 6 " 0, referred to earlier (see Table 1),

the beam-column terms were insignificant. However-, with initial deflections as

large as 6 = L 0.2h such terms become important. Additional deflections (w) con-

tribute very little to beam-column effects.
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Thus;: the results shown in Figs. 11 through 18 have been obtained by using

S= 7 = 0 (8.3)

in Eqs. (5.7). Numerical results for y 4 0 have been obtained and justify

the above procedure. For example, at 7 = 0.3 the above procedure gives the

stresses to within six percent of the more accurate value. Hence, instead

of plotting numerous identical sets of curves for various values of 7, it is

sufficient to present the single set of results obtained by using Eqs. (8.3).

In the absence of transverse shear deformations (• = 0), the bend-

ing stresses decrease with increasing outward initial deflection until, at

A = AI = - 04.02 in. for the shell considered (h = 0.388 in.), the bending

stresses become negligible (Fig. 11) and the shell (with A = LI) behaves

almost as a membrane. This effect, coupled with the sharp decrease in

hoop stress that accompanies large outward (negative) initial deformations

causes the yield pressure to increase as A becomes more negative (Fig. 12).

For A < A, yielding can begin on the outer surface of the shell at the

frame, whereas for A > A1 yielding begins at the inner shell surface of the

frame. The actual initial deflection at which yielding occurs throughout the
II

shell wall at the frame varies slightly from the above value when Flugge

accuracy is maintained (compare Figs. 14 and 12).
II

The most important Flugge type correction term is that which in-

creases the axial stress resultant Nx (see Eq. (2.5)]. FLrther comparison

of Figs. il and 13 reveals that the stresses (nondimensionalized with respect

to N X/h) are only slightly influenced Ly Flugge type terms. The actual stresses,
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however, are proportional to N and change by about 10 percent (for h 0.•88")x

due to the change N . This shows up as a 10 percent decrease in yield pres-

sure when Flugge ý s is included (see Figs. 12 and 14).

The effect of transverse shear deformaticn is to increase the

bending stresses at the frame and decrease those at midbay (Fig. 15). Also,

the value of the initial yield pressure (e g., at the shell inner surface

near the frame) decreases when such effects arc 'ncluded (Fig 16). Comparison

of Figs. 11 and 17 reveals that the changes in bending stresses described

above become more pronounced with increasing initial defle-tions. Accordingly,

the initial yield F-essure decreases with initial inward deflections (Fig 18).

Thus, from the results obtalned the following conclusions may be

presented:

1. For the shell material considered here, an equivalent isotropic

analysis gives stresses accurate to within ten percent.

2. Stiffening the ring may increase the axial bending stresses

enough to weaken the structure by causing early yield. This was observed

experimentally in Ref. 1.

3. The relatively short, thick shell deflects very little before

yielding and is not susceptible to beam-column effects. Initial deflections,

however, may be large enough to cause significant beam-column effects. Short's

suggestion (Ref. 9) that the beam-column effect be utilized to strengthen

the shell by building in an outward initial deflection that minimizes the

bending stresses may be used on this type of shell. All that need be done

is to wind the shell on a barrel shaped mandrel.
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4. Yield pressures which are well below experimental collapse

pressures indicate that yielding begins well in advance of collapse. This

may be remedied by increasing the yield stress in the radial direction.

5. If the shell is permitted an additional degree of freedom by

allowing transverse shear deformation, the frame bending stresses increase

and the initial yield pressure decreases. The transverse shear deformation

theory cannot, however, be considered as necessarily more accurate; this is

demonstrated in Ref. 2.

6. The only Flugge type term that has a significant effect is

that due to using the outer shell diameter when calculating the axial pres-

sure force acting on the shell.

7. For the shell structures examined in the present work, the

yield condition was reached before y, •, a or 6 exhibited any substantial

influence on stress curves. Thus, it was found that a perturbation technique

can be employed to give fast and accurate results (see appendix D).

8. In order to obtain reasonable estimates of the stresses in

the constituent materials it is necessary to modifý the stresses obtained

for the equivalent homogeneous shell. This modification can be achieved

by multiplying the stresses given by Eqs. (5.5) by appropriate stress con-

centration factors (see Appendix E).
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APPENDIX A

BASIC SHELL EQUATIONS

The differential equations describing the axisyrnmetric deforma-,

tion of the shell are obtained by utilizing approximate forms of

the basic equations of the theory of elasticity.

First the strain components are found in terms of the displace-

me.ts and rotation. The length of an infinitcsin•al line ds° in thc w.IlI

of a circular cylindrical shell with a slight axisymmetric initial de-

flection w0 may be obtained from (for example, see Ref. 6)

2 2 2 2 2
dso = d,0 + (a - z - wo)2dq2 + dCo2

whereý

S= x - zwo x Co = z + w w+ = Wo(X) (A.- )

x, (p and z are Lagrangian coordinates in the axial, circumferential and in-

ward radial directions, respectively, and ale inedabured frouwi a p•oint On the

median surface at the midbay station of the 5hell (see Fig. 1). These co-

ordinates are fixed to the shell. t and C0 are Eulerian coordinates in

the axial and inward radial directions, respectively, measured from the

median surface at t.e midbay station of a perfect, undeformed shell, a is

the radius of the median surface and wo is the initial inward deflection of

that surface. A comma followed by a subscripted variable denotes differen-

tiation with respect to that variable.
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After axisymmetric deformation the infinitesimal line attains a

new length d61 where

2 =d 2 .w22 2
ds 2 dt + (a - z - w w)dq+ dCi (A.)

with

I ~~l =x~+u~

1 =Z w0 + w

u u(x,z)

w - W(x)

and C, are Eulerian coordinates similar to to and Co. u is the axial

displacement oi a point irn the shell wall and w is the inward deflecticn of

the madfai, *-urface from the initially deformed shape. If normals to the median

surface remain straight and unextended throughout the deformation,

U u -z(w+wo,) (+.Wa)

--W - . 0 .3b)

where LI iS the axial displacement of a point in the median surface, w is the

additional rotation of the median surface normal about a circumferential axis
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due to loading and x is the corrsbpondina transverse shearing strain. It

is noted here that ?xz and uw 3re not independent of each other.

The strain components are obtained from [Eee Eqs. tA.I) and (A.I)}

dS 2 _ dS 2 = 2 dx 2 + 2•( (a'••"z) 2 dq 2 + 21C dz 2 + - z1 dxdz (A.4)

Hence,

+ w (wI + 2 w )- (w, -

Yx ' ~ "WxWx o.' xx 7,xz,x

e=- w/(a-z-wo)

Ce (w, -~ jXzw O' ; 0z= (,x' xzWo, x ~

YXz I x - CO- U, W O' Z W -Y xA.W

in which it has been assumed that

u2 <<W (w + 2w ) < < I w < < a -z -w (A.6)x 'x 0x 0

It is noted that a transverse shear term has been retained so that

the usual Kirchhoff assumption that lines originally normal to the median

surface remain normal is removed. However, with regard to kinematic con-

siderations, it is assumed that such lines remain straight and unextended.



In order to obtain a set of equi Iibri-jr equations consistent with

the strain-displacement relations [(Eqs. (A.5)J the first variation of the

total potential can be set equal to zero

6(U + V) = 0 or 6U + 6V Ui (A.7)

where U is the strain energy and V is the potential due io externally apulied

loads. Thus,

L/2 h/2
6U = 27TF L/2 .-4h/2 (7x6cx + oq t p + C z6z + T 7) (a-Z-Wo)dZdx (A.8)

When Eqs. (A.4) and (A.,5) are substituted into Eq. (A.8) and integrations by

parts are performed, Eq. (A.8) becomes

L/2 N
6 = 27raf L iNx + (Qwo. x),x]6u + [-•Mx N - w - 16w

LI2
+ (-M X+Q)S'xzldx + i-a{L[(N,-Qw )o,)6u -LIZ

L NL/2 LI2
[(M+ +MN(W )6w- 8,X x ) 62 (A.9)

in which the stress resultants are defined by

h/2
N X - [l [ (2z/h)6 - (w/la)] dz (A. lOa)

h/2

N= cý, d o~b)

h/2
M .h a [I -A (2z/h)6 (wl/a)]zdz (A.l0c)

h/2
Q = -h/2 TXz[I (2z/h)- (Wo/a)] dz kA.10d)
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where o is the axial stress, o is the citcumferential stress and T isX q) XZI

the transverse shear stress with K as the corresponding sheer coue fficient.

The potential due to external pressuie is obtained by considering the

volume change. Thus

VP ='VOL pd(VOL) (All

The increment of volume is given by

d(VOL) = 7r(a + h .- -)2(dý ) (A.12)
z - h/2

where w = w + w and

(d[) (I + u + w )dx

I = - h/2 •x 2 x

The variation of this potential is

L/2 h w2

6 pa$ 6[ (o + •- L , (1 + u + x)-dx (A .13)

After integration by parts, Eq. (A.13) yields

2 2 ~ h.'

v=p pa. L/I + -1 -. )(l + U + Y W )16w
Po-L/2 a 2a a pag2 x

(continued on next page)



+ h -w
.2 h 0 W (+u + & u) dx+2a a-

2 h w2 h L2
+ p-a2[2(1 +2a ) (6u +26•0))]-L/2 (A. 14)

Finally, the variation in the potential due to other externally applied loads

is given by

L/2 L/2 L/2
5Vf -N x I-L/2 - [Nxx-L/2 x Wxz W, -L/2

L/2 L/2
"[mx, x W]-L12 + [QfWo,x .-L/2

The potential of externally applied lodb, :s

V = Vp + Vf (A.16)

Equation (A.7) to (A.16) leads to the differential equations of equilibrium

- Nx x+ p[i + h/2a - (w+wo)Ial(w+w ) - (Qw 0 (A.17a)
],0x o- hX

[Nx(W'WO),] - N /a - Q - p[I + h/2a - (W+w)/aJ(l + u x i/2 x -

(A. 17b)

1'x,x h l - (w+w)/1j(w1w) = U (A.1Tc)

with boundary conditions at x = ± L/2
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2
Nx - Qwo'x + (pa/2)1l + h/2a - (wf+Wf )/a2 = 0 or bu = C (A.l8a)

2 ]2

- x + (n/2a)(pa 2/2)[1 + h/2a - (w + w)I'a3 = 0 or 6 =- 0 (A.181)

(w + wo),' + Q = 0 or bw = 0 (A.1 8 c)

Equations (A.16) combine to yield the resulting axisymmetric equilibrium equa-

tions for hydrostatic pressure loading of a shell of uniform thickness (in

which the assumptions given by inequalities (2.4) have been utilized), viz.,

- Nxx + 2p[l + 6 - (w + w )ia](w + w ) x = 0 (A.19a)

[N (W + W , + M + Nb/a + p[l + b + (w + wo)/a] = 0 (A.19b)

- M +Q0. + Q (A. 19c)X•X

where 6 = hi2a (set equal to zero when Fluggc accuracy is not required, i.e., c

when the variation of radius of curvature across the thickness is neglected).

For the problem being considered here, the following conditions must

also be satisfied at the shell boulidaries x = L/2:

Nx + (pa/2)[1 + 8 - (w + w )/al 2 = 0 (A.20a)

w =ws = w R (A.20b)

CO 0 (A.20c)



where wR is the deflection cf the ring at the contact surface and %j iý

the deflection of the section of shell in contact with the ring. For the

ring-supported shell conside.ed herc the axial stress rcaultant at the

frame is due to the external pressure loading [Eq. (A,20a)J; the ring and

the shell ren;ain in contact throughout the deformation [Eq. (A.20b)]; and

since the ring flanges are not permitted to bendthe rotation vanishes at

the boundary [Eq. (A,20c)j.

The stress-strain relationships are those for an orIhotropic,

I;neariy elastic shell with su i=ces of elastic symmetry defined by normals

directed along tht' coordinates x, q( and z, respectively. The shell skin is

assumed to be in a state of modified plane stress (i.e., with a transverse

shear term permitted), thus

E

E."-q2 (C + (A.2 R;)
I-v 2

Txz= Gxzrxz (A.21c)

aoz 0 (A.21d)



and t row t.e axisymmetric nature of the structure ar.d !oadinr

T ~Tq (A. 2 1e)

wh•.,e

VxT E = v E (A ? If)

Vx V 2 (A.2 19)

in which F Ae4 F t r1 the axxia i •: ..... ..... , e-z'-'is . -odu i. reS-

pectively, Gxz is the transverse shear modulus, v x(P and v are the Poisson

ratios.

In order to formulate the problem in terms of the stress resul-

tants, rather than the stresses, Eqs. (A.lU) and (A.21) are combined. Thus

NX = [a), A (w°/a)]co + axCeO - [bX-B (wo/a)Iwx (A.22a)

N [i - (wo/a)]A - [1 - 2(w0/a)j8(P + 1 CP + x(+x b q4- ,x

0A0

(A .22b)
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M= [bx - B8 (wo/a)lc + t ; - [dx - C x(Wo/a) J/a) x (A,22c)x ]xo o~

w
Q xz x ( W, (. - L(u ) (A.22d)

in which

£ u/2)(w +2w ) (A.23a)

A ,x

4 w (A.23b)

and

h/2 E h/2 E

-h/2 dz

h/2 I zdz 2 dz
b -h/2 I-v h-/2 I-v

h/2 E h/2 E v
b zdz 2"xdz

h/2 E h/2 _.•

Aq,=J*'-h/2 i-v2 a -_h/2 I-v2

h/2 E h/2- E

b lz~ z 2 jd

a -h/2 I -v2 x -h/2 I-v

h/2 E . h/? 2
A- Gx(I - z)dz (A.24)2 -h2 2 2

-h/2 a I -V2 -h/a x
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The basic Eqs. (A.5), (A.19) and (A.22) subject to boundary con-

ditions given by Eq. (A.20) describe the deformation of the shell. Thuse

consist of ten equations in the unknowns NxY Q, Mx, Nq, T 3 uy U; ex) Cq)

and

Integration of Eq. (A.19a) and application of the boundary con-

dition Eq. (A.20a) reveals that Nx is very nearly constant. In facc, the

assumption that

(w + Wo)/a < < I + (A.25)

leads to

Nx - (pa/2)(I + 6)2 (A.26)

If Eq. (A.22a) is used to elimirnate ex from Eq. (A.22b-d) and

if Eq. (A.23b) is introduced, the resulting equations reduce to the linear

relations

M = zN 653E*w - *w (A.27a)Mx 1 ~ 3 "ý Dx x

•'•2a 2  5
N= v . N -2Ew*_ -2a 23 EIw (A.27b)

Q = hG [1 - (w/a)](w --w)
xz x

=hG [I - (2)J0 (A.27c)



whe re

z= [bx - Bx(Wo/a)J/[ax - A (w/a)]

w

D=d -C o b -Bx(wo/a)]zx x x a X 0 1

aqX a - A-

x xa

In view of the fact that..N is a known constant given by Eq. (A-2Q, the

...... reanig stress resultants are seen t o be linear tunctions of w

and w.

In order to avoid variable coefficients in the final differential

equations the shell material must be assumed to be homogeneoiis in the axial

direction; in addi.tion the wo0 terms must be neglected in Eqs. (A.28). Thus,

wo0 must be small enough for the following assumptions to apply;

wola < < 1/2

0

a < < (d + [/ -(w/a) - 2(wC

(continued on next page)

Inodrt vi aibecefcet ntefnldfeeta

eqaioste hlmmtra mns me aumedm to be hmmomm ne mm m in the axial --

dieto;i diintew em utb elce nEs A2) hs
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w a )•"•< Aý = 0 (1)

W b-- < < •-• o (l) (A.29)
a x

x

If the shell material is also homogeneous through the thickness, the

condition w 0/a < < 1/2 prevails and, hence Eqs. (A.28) rsducc to

=~ 2

E q v v(PEx/(I-v)

D *= D[ -(
x 2

E * = E [I + (63 /3)/(1-v2)3

V(ýx V cx

G xz xz(A. a)

where

Dx (I/12)E h'/(1 " v2)
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When Eqs. (A.27), (A.28a) and (A.29) are substituted into Eqs.

(A.19b) and (A.19c) the shell problem reduces to the solution of the follow-

ing pair of linear, second order differential equations with constant co-

efficients:

L, w + Ll 2ex = 1 3 Wo + L14 (A.3Oa)

L2 1w + L 2ewx = L2 5w0  (A.30b)

where Lij are currmutative differential operators defined by

L (-N L2 a- 6 3F" ý-') +6E' = (-N E 6E"L11 = x 3 qt- 4 "d- 2 a" CP (x qx dx 2 a

L D• * 3c -2 + G' 2a 6 hd 32 E_ ,:12 d dx 2 "h

'-i 3,* ph2d 2 3 2"-- -- hGL2 3Z dx d xz 2

L. D * H2 hG
24 x dx~ 2 XZ

2 42

L (N + __ M
3 4 ' - dx2

2h 12
L1  .-- p(I + 6) L .2 2 -0
14 a Nx 2.3 -2 dx2

"JTe approximations indicated above are associated with terms which

are due to tfcup-leo beam-column and Flugge effects. For the shell considered

here these tekhflnt are extremely small and hence are neglected.
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Elimination of c from Eqs. (A.30) yields the following fourth order

equation in the deflection w:

w + 4(0/L) 2 (A/B)w + 4(0/L) 4w/B = (4;_t/B)woWjX XX X XX OXX

2 2-
- 147(e/L) /B1w + 8(e/i.)2•{1 - (G l /2)(l+b)1/aB(l+,) (A.31)

where

A=7- r+cz

B I -4

4 2
(O/L) = hE /4a2D

7 . N /4 D /(O/2
x X

= (@/L) 2 D/hG"x xz

Q a E 3*(1L)2 (A.32)

Subtraction of Eq. (A.3Ob) from Eq. (A.30a) yields a convenient

expression for the change in curvature

= [Bw - 4g(/lL)2w + 8; [1 / - (I/ l(÷2ctt)
•,X kx qx

(A-3.3)
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Eqs. (A.19c), (A.27a) and (A.33) combined to give the following

relativn for the transverse shear svress resultant:

Q = - Dw - 2(e/Lt 2 (2.-•)w - Iy~w 1I(I+2oe) (A.534)
X , x

Finally, Eqs. (A..4) and (A.270) cor.,bine [using conditions (A.29)] to give

the rotation as a function of w

J= I[[ + 4t(a-t)]w + g(l./e)2 (Bw-4yw I/XX+2cy) (A.3ý), x Bw'k•Wo) xxx]/'I+2Y)(A )

The governing differential equations of the shell cc.nsist of

any two of Eq. (A.31), (A..33) and (A.35).

In Eqs. (A.32) the nondimensional parameter 7 is a measuie of

the nonlinear "beam-column" effects (see Ref. 5). Although ?, and 7 are

numerically equal, 7 terms result from nonlinear effects while -7 terms

result from the linear effects of the pressure. Thus if the beam-column

effect is neglected 7 = 0 while 7 .= 0.

The nondimensional parameter ý is a measure of the transverse

shear effect. If no transverse shear is permitted G -, and C -.

:1

Furthermore, the nondimensiona! parameters o0 and 5 vanish when Flugge

type accuracy is not desired.

It is noted that special cases exist when A or 6 vanish. When

0, 'y 7 0, A - O.and 8 - 1, Eq. (A.31) reduces to the equation correspond-

ing to the omission of both trarnsverse shear and beam-column effects. When

L
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.. the transverse shear andl beam-colunwi effects combine to caij-z 8 0 , the

entire nature of the differential equation changes. When the higher order

effects are omitted, i.e., when 7 = = = C = = 0, except the 6 term

;n tht, dsmiu,;naLur, E-4. %A.31) corresponds to that obtained ;r- Ref. 1, in

which Hom provided for the only significant Flugge type term, which cor-

responds to 6 V 0 in the expression for the axial stress resultant [see

Eq. (A.26)].

When transverse shear deformations are neglected (• 0) only

one equa.ion is necessary to describe the shell deformation. In this

case Eqs. (A.33.) and (A.35) are satisfied by the condition that w =wax

and Eq. (A.31) reduces to

+ 4(e/L) 2( 74Q)w +4(e/L)w 4 47(e/L)2 WW XXXXX O• xx

2-+ 8(0/L) 7[ 1- /2)(l+4)1/a(l+6) (A.-3a)

I(P

If Flugge thickness terms are also neglected (a=5=0) and if no initial

deflections are considered (w 0), Eq. (A.3la) reduces to

w +4y(e/L)2w +4(e/L) 4r8(6/L) 2y( I- /2)/a (A• ib)
,xxxx X P

Equation (A.31b) corresponds to that obtained in Ref. 7, in which similar

formulae as those presented here w re developed and, in addition, the re-

sults were expressed explicitly in terms of the load and the basic shell

material and geometrical input quantities.



APPENDIX 6 (Ref. 7)

EVALUATION OF c'

The geometric ring parameter c' is defined as [see Eq. (3.4)]

h. RW Z)dZ = WAfP

A A JR
f -h -z .f

0 I

where - Z. From the definition (81), it can be seen that c'

is dependent only upon the geometry of the ring cross section ana is

therefore independent of the choice of origin of Z.

Performing thte integration indicated in (81) for a general "1"

section yields

t. td
c -•(b -.h,)Iog(l + -1) - (bo-h )lg('I - z;) - h 1,og, - R-)] GENERAL "

Af ic a

(B2)

where, d = R - R- is the total height of the ring cross sectior..
0 1

A. Origin of Z at M id-Heiqht of Ring:

For this choice of the origin of Z

d , -• d -- d
= hi d and R. F , Ro +d

Therefore, Eq. (B2) becomes



U

t./R R661

, "R •( b i-hJ) ,•..:, ,(-h )i 'oyH-- 2 --- _j -h,,-oi- .2]

c ý( h 110b 1 W, l -dR /R-1lg, log'1d,2
SI-d/2R I+d/2R I+d/2R

UINERAL "T" (83)

However, recalling that

Iog(l + x) F ()n-I 6. for -1 < x < i
n=) n

Sn
log(0-x) = - for -1 < x <

n=l n

and that

n =O

permits Eq. (03) to be rewritten as

c ;:z~ -~ h+-to+
A. f ddj d 2

tt

+ (b-h

2K + +B

+ R RE + d 2 GENERAL "I" (B4'

in which all terms of third or higher order have been neglected due to the

fact that t and d are small compared to R, i.e.,
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I- I 3

R R

wthere here, and in subsequent expansions, R is considered to be very

much greater than d.

I. Rec•tangular Section

For a rectangular ring cross section of height d and width hiw,

A dh and t to
f

Therefore, Eq. (B14) becomes (W > > d)

c' = + 0 •2I RL d 2 RECTANGULAR (B5)
R

2. Equal Flange "T" Section

For an cqual flange "I" ring cross section,

b = b. b ,t t. =
0 I I

Therefore, Eq. (B4) becomes

c - - [(b-h_)= [2 + 2(d)2- d 2 t2+ h + (d2
c -. A 3 22 +) h I~

f R R R R R

EQUAL ''I" (B6)

where,
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Af = 2t(b-h ) W dh
w W

If the second order terms in t and d of (B6) are dropped as being small

OT> > d)

c••I

5. Idealized "T" Section

For an idealized "I" section

hw =0 A f 2bt 1 0 t At.=t-.O

Therefore, Eq. (B6) becomes (-R> > d)

+ _L (-) 2 ) IDEAL "

R
(f 7

B. Origin of Z at Lentroid of Ring Cross Section:

Since Eq. (84) contains terms wnich can be related to the

first moment of area, it is logical to choose R to be the radius to the

..... d of the,, ring Cioss ! ction.

The definition of c' can be rewritten as [see Eq. (61)]

c dAf dAfc • .. (Ba)

rf -Z Af -Z/R

or,
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Af Af Z2dAfc' I + - ZdA f (a IT •-/(b)
R R Il-Z/R

However, since the origin of Z iz taken to be the centroid of the cross-

sectional area,

I ZdAf - 0

Therefore,

P 2C' = + (-)2c (C8)
R

where,

is the radius of gyration of the cross-sectional area,

P Z2d~
If =ZI is the moment of inertia of the cross-

sectional area about Z = 0

and

2 h

Z2dA h i _2( (B9)
I fi I Z JZ)d?09)

If ]-Z/R If -h 1I Z/R
0
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Expanding Z2 /(0 - Z/R) in a series (R > > d), performing the

integration indicated in (B9) for a general "'J" section, and neglecting

terms of order (Z.5/R5) and higher, yields the following expression for c

b )4b. .

b 4o i 4

(hi-ti) ] + - I (hi-ti - (h -t ) ] GENERAL ' (8IO)4iý
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APPENDIX C. AXISYMMETRIC BUCKLING LOAD OF INFINITE, UNSUPPORTED
ORTHOTROPIC CYLINDER UNDER AXIAL

COMPRESS I ON

The differential equation governing the deflection of a perfect

shell subjected to axial compression is taken from Eq. (2.1); i.e.,

4 (11)
W + 1 - Lr ,x 0 (ClOWxxxx I - 47t ,xx +1f-4,,, (w

The nontrivial (axisyrrinetric buckling) solution is

w = DcosX (C2)L

where L is the wavelength of the buckling pattern. Substitution gives

- 402o 2 + 49 4b O (C3a)

a- Y-E (C3b)

1-4
b - 1-7 (c:•c)

Thus

X2 = 2 2 (a a2-b) (C4)

In order for w to remain finite 3 must be real. Then the following two

possibilities exist:
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0 < b < a 2 
(.

or
b < 0 

(C5b)

In the first case substituting Eqs. (C~b) and (C3c) into(C5) yields an

expression for the buckling load parameter Y

7= l + 4ta o (C6 a)

when

S< (c6b)

For sufficiently small e Eq. (C6a) is closely approximated by

7 1- a- (1-2o) (C7)

in the second case (b < 0) the buckling load given by Eq. (Cýb) is

' I (c8)

Equations (C7) and (C8) intersect (in the 7, • plane) when

0I - - T(I - 2y) (CMa)4 7
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(C9b)

Thus, when t < :/2 the hý:-Alivng load is given by Eq. (CV); when shear

auformation effects are rire significant, 1 - 1/2, the buckling load

'b given by Eq. (C8). Th3. buck'ing load , is plotted as a function of

, for ct = 0.00.549 ir Fig. 19, al;hoLgh this figure is applicable as long

as ct < < 1. For the she'A comparable to that described by Eqs. (8.1) and

(8.2) (i.e., 0 = ..1367) the buckling load is given by

y 0 o 8.57 (CIO)

The corresponding critical pressure 11; p 7.078 n 104• psi
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APPENDIX D. PERTURBATION SOLUIION

The result, described in section 8 show that the stresses are

approximately linear functions of the parameter 7 (see Figs. 3 to 10). This

observation suggests that a perturbation solution should give accurate pre-

dictions of the stresses and displacements when the parameter 4 is small

[see Eqs. (4..5d), (2.1 ) and (2.2 )). For the initial deflections coni-

sidered here [see Eq. (4.1)], the governing differential equations [Eqs.

(2. 1 ) and (2.2)' are

w + (4/B) (O/L)4w " /.B) (0/ L) 4w _ 4(e/L) 2 w• (Dwa)

x xxx p X
Cu,1x =BW, xx - 4g (el1L) 4 (w- Wp) (Dlb)

where wp may Ie obtAined from Eqs. (4.2)..

Whcnm 'IVsils a solution may be assumed to be of the form

w ,L w (x) J, , W = E: 0.- t (D2)

i-O i=fl

Substitution of Eqs. (D2) into (DI) leaves

4- 4 4
1woxx+ (4/B) (eIL) w (4/8) (9/L) w ] + twxx + (4/B) (GIL)wI

+ (4/1/B)(e/L) 2 ] + '2[ ] + ... = 0 (D3a)

and



L (- -89 + 4t(19/L) (W- -W + *k". -8W + 4t (0'L)~ w + +
o~ o~x0 pi,x Ixx IDb

The fir-st approximate solutic-n w;0, 7 may be obta'ned by setting

4r=0 in Eqs. (05). Thus,

w 'xx+ (4/i8) (e/L) w (4/B) (OIL) 4w P(4a

4-
WO,'( =BO,XX -4fe/L) (W -W ) (D4b)

The solut ion for w is taken in the form

W 0 =W p[I + c 0 qI (X) + c 20 92 Wx +. C30 9 (X) + c4 g()

where

9,(x) =sinh(Ox/L/B)cos(Ox/L/B)

92(x) =sinh(Ox/L./B)sin(6x/LJB)

=cosh(Ox/L/B)sin(Qx/LIB)

g() cosh(6x/LB)ctzt.(ex/LJB) (05)
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The arbitrary constants c. are determined by using syr.;ictry10

[see Eq. (4.9)] and by applying Eqs. (2.9bc) in conjunction with Eqs.

(3.18), (3.20), (A.34), (A.35), (4.10), (D4) and (05). Thus,

;;0 = [8(7A-T p ) /0'l 1 1 (7A-7A 1) / (Ta7A-Ap )194(x)

+ (g2 (x)/B) (G4o/G20 )3AQ1

and

2 2x/BS - (32A /L )(tA-7AI)t-[(1/28) + t (G4 0 IG2 0 )][9 2 (x)/B3

+ [(I/2B) (G4 0 /G 2 0 ) - •]g4x)1 (D6)

whe re

G10 = (2/e)"-(,5+o-•90)'/[B. g'•,0 •2 0 + 9i0•j4O) + R2 (9 g 4og 0 - 91O920)]

G (B2 n ) )/[B g + gq) + B

20 110+92-5(930920 91040 B2 930940  902

( .. . D B juL 0 + . 2340 910920

Ao  3 c8G2 0 /t B + G1O(1-OC)[0 c + (0+6-6"26)c]/x3l

- 1 (L/2)

(continued on next page)

L
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I + 2+(l - + a)

B I - 2t(l + 2E - a)

The corresponding stresses may be obtained by direct substitution

of Eqs. (D6) into Eqs. (5.3). This solution could, of course, be obtained

frhn the solution presentd ir, the text by simply setting if 0 in Eqs.

(4.14) amd (4.13).

The first perturbation yields

4- 2-Wlxxxx + (4/e) (e/L) , = - (4//B) (e/L) woxx (D0 a)

and

W w' = - 4I (D7b)

with boundary conditions

w (• L/2) = 0 w& L/2) 0 (D8)

The solution for wc •an be shown to be

= -"8(0A-'•6)/e 2 jc2192(x) + c4194(x) + (Ox/L)[c,,g,(x) + c3553(x)]J

(D9a)
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whcre

c (1/12)il1 - (G4()/G9 0 ), (Dgb)

= (1/2)! I + (G4 /G2 )(9c

21 40 9 4 0/L 1(930 92 c+ 9 109 0)+ 2 (g30 940 910 920 )j (~d)

C'41 + A G2 0-8 920 /[B ](930920+y9040 + 5 2 ( g3 ug4 0-'10 '20 )I (Dge)

A=(-e,/2)(c 11g910 + C319 3 () (Dgt)

B -L1-~(2-c~i~c+cg+(0/2)LC ( ý)c g+11910 319.50+ H 4 01 24

-t-2 2c (t') (D99)

The solution may now be wrIitten to ,nL~ude the -,irst perturbatiun,

thus

W = W +jw 1 and tL = 10 + ., (DI0)
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When y and t are small (as they are in the region of p for which

the shells consider--d in this work behave elastically)

8 = 1 - 47 t : I [see Eqs. (2.4))

Then the linearized form of GI0 , G2 0 and G40 become

G F1  1 -1F I1-" F3 1

G2 0 ZF 2  -2• (F4  +F F5 )

G 40F + 2t[F2  - 3 9 F53 F4 ] (D1

where

FI = (2/1) (g30 + 9TO)/[ (g309 2 0 +g1Og4 0 ) + (93094 0 -g 10 g2 0 )]

F2 = (910+930)/[(g93g 20+g10g40 )+ (930+40-910920)]

Lg4 0 g30-g 10g2 0 -(930920+10940))/ 30920+ o40

Fw• = [- (012)
=3 4 50 -gl10 /[ (g93g 2 0 +g10g4 0 ) + (930g40"g1o920)(

The functions Fi, correspond to the functions Fi listed in Ref.

(12) which were displayed graphically as functions of e for the isotropic case.
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The stresses can be obtained by substituting Eqs. (DIO) into

Eqs. (5.3) and using Eqs. (5.6). In general Eqs. (DIlI) and (D12) may be

used in place of the definitions for G . given in Eqs. (D6). When this

is done, the charts of F. wv e offered in Ref. 15 may be utilized to

obtain G O" This procedure results in a considerable reduction of compu-

tation time and provides accurate stresses and displacements for the most

general case provided that ý is reasonably small.

To obtain the F. vs e relations displayed as functions of 7 as

well as e in Ref. 6, it is necessary to set 6 = t 0 in Eqs. (4.12) and

to replace GP, G2 , G. and G4 in Eqs.(4.12),withFl, F2 , 0.9113 F5 and

60.191/ F4 , respectively. These functions are displayed graphically in

Rief 5.
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APPENDlY. E

STRESSES IN NONHOMOGENEOUS SHELL

It was observed in Ref. 13 that because of the nonhomogeneity

of material properties through the thickness of the composite, Hill's yield

criteria for a homogeneous orthotropic material could not be expected to

provide accurate estimates of the yield pressure. This short coming moti-

vated the work that is discussed in this appendix.

The elastic constants given in Eq. (8.1) were obtained experi-

mentally by measuring the sLrains in a pressurized cylinder (of 3C:2L winding

ratio) and utilizing stress strain relationships in a simple homogeneous

shell theory (Ref. 14). Heiice, it is reasonable to expect that the homo-

genequs shell theory utilized in this work will accurately Fredict the

shell deformations [[qs. (4.13) and (4.14)]. However, the nominal stresses

obtained with these constants for an equivalent homogeneous material [Eqs.

(5.3)] cannot always b-2 exoected to correspond to the actual stresses acting

in the nonhomogeneous composite shell, which c.onsists of materials of widely

varying elastic properties.

If the deformations .,redicted by shell theory are accurate, then

the individual constituents of the shell matcri3l must deform according to

Eqs. (4.13) and (4.14). Once these deformations are known, it is necessary

to use Eqs. (5.1) to calculate the stresses in the constituent materials.
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It is possible, however, to obtain approximate values for the

stresses in the nonhomogeneous shell by utilizing the uniaxial stress

strain relationships suggested in Ref. 15 and Ref. 16. For example, the

effective composite modulus E2Y say, in a direction normal to the fiber

direction could be outained by assuming the fiber resin system to behave

as a spring in series. This results in (see Ref. 15)

l+V /V
E E /EcV ) for V > 68 percent (E.1)e g 9 e

in which E and E are the moduli of the resin and fiberglass, respectively,e 9

V and V are the percentages, by volume, of the resin and fiberglass. Ine g

Ref. 15 it is shown that a more complicated relation is necessary for com-

posites with V e- 68 percent.9

It is noted that the effective modulus given by Eq. (E.1) is

based upon the assumption that the spacing between the fibers is uniform in

that the volume percentage ratio Vg/V• is assumed to be equal to the

(presumably) uniform ratio of fiber cross section to resin cross section.

Shaffer has pointed out winding irregularities could cause serious

fluctuations in this ratio.

The effective composite modulus E, in a direction parallel to the

fiber direction is given by

l+e V /E V
E = ( VE/V + q) (E.2)

e g

Shaffer, B.W.: Filament Reinforced Plastics Micro-Mechanics-Structural
Mechanics: Seminar given at Polytechnic Institute of Brooklyn, Feb. 9, 1968.
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:n the filament winding direction the stresses ineach of the con-

stituents may be obtained by multiplying the stresses in the equivalent

homogeneous shell by appropriate ratios of the elastic constants (these

ratios are often referred to as stress concentration factors). There is

some approximation involved due to neglecting Poisson ratio changes, but

the error induced in this manner is expected to be small. If more accuracy

is desired, the deformations given by shell theory could be substituted

directly into Eqs. (5.l). In the directions normal to the filament winding

direction, the stresses are transmitted from one constituent to the other

and must be matched across the glass resin interface in order to satisfy

equilibrium requirements. In these directions it may be assumed that the

stresses in the fiberglass and resin are equal.

Since the stresses in an equivalent homogeneous shell have been

calculated (see Table 3), the stresses of the constituents may be approxi-

mated as follows:

I. In a fiberglass filament

aI
C h E (I-va) a h
(Nx g E (1-v92) (xx•

x 2

in a longitudinal layer

• x_ h ) 9 I+ V / V e E e oT h

x g +EeVg/E A e V x

(continued on next page)
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Sh ÷V /V E oh
Ce e x

xe g ge x X

in a circumferentially wound layer

2
o h E (I-v) h

X E (P 1-V ) x
q~ g

2. In the resin

a h E (I-v) o h

x E x (-v2) e x

in a longitudinal layer

o h l+V /V E oh

e Il+EeV/FV Ecp x

a h 1+V /V Eo h

e _+E V/E V )F x_)x eg 9 e x x

in a circumferertiaiy wound layer

a Ph E ~2 aoh
=ý (I -V ) (E .4)

X qI V e x

V and Ve arc the Poisson ratio's of the glass and resin. The g and e sub-

scripts denote the local stresses in the fiberglass and the resin, respectively.

Once the stresses have been obtained from the above relations a

maximum stress yield criterion can be used to approximate the magnitude of

the pressure at which yielding begins. Thus,
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IX

Py._.-.=.. 2(hla) in the fiberglass
Yg (1+8)2 (Ni2)

Py
e _ 2(h/a) in the resin

Ye (1+8)2 in

where Y and Ye are the yield stresses cf the fiberglass and the resin.,g e

respectively.

Limited calculations were performed on a shell of dimensions equal

to those of the equivalent homogeneous snell [Eqs. (8.1)]. The constituent

elastic constants and yield stresses were taken from Ref. (18), while the

volume ratio was dcduced from Ref. 1.

E= 10.5 x 106psi E = 0.3 x 10 6ps

v 0.2 , = 0.35
g e

Y > 200,000 psi , Y = 22,000 psi

VV = 2.188

Substitution of Eqs. (E.6) into (E.5) to (E.3) gives approximate

values of the initial yieid pressure. It is found that the yielding would

initiate in the resin near the shell inner surface, next to the frame, at

pressures of
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p = 11785 due to circumferential stress in a longitudinal
e layer

py= 11157 due to longitudinal stress in a circumferential

e layer

These yield pressures are within ten percent of the experimentally

determined collapse load of the shell examined in the text. Hence, the

shell appears to be weakest at the frame, near the inner shell surface.

The stresses in the Oirection perpendicular to the fiber directions exceed

the relatively low yield stress of the resin at extremely low pressures.

When this happens the shell might be considered to be delaminating in that

the resin is no longer binding the layers together.

Winding irregularities, as noted earlier, may, through effective

modulus changes, cause yielding to occur very early in some portions of

the shell. Evidently, this early yielding results in little more than slight

changes in the conposiLe moduli (e.y., see Ref. 14 and Ref. 19).

41
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TABLE 

8

STRLSSES, DEFLECTIONS AND LOADS ( 8= - O)

h 0.388 in. h 0,12.4 in.
ISOTROPIC ISOTROPIC

ORTHO- E = 5.395 x 10 6(PSI) ORTHO- E .39 x 10 6(PSI)
TROPIC (Ef/E) TROPIC (Ef/E)

I =1.335 t(El/) I 1.39 (Efli) =

o0.1 0.931 0.247
P x 10 0.2 1.861 0.495

(PSI) 0.3 2.791 0.742
0.4 3.722 0.990

-5 0.1 0.766 0.395
o x 10 0.2 1.532 0.790

U(PSI) 0.3 2.298 1.185
o..4 3.064 1.580

2 0.1 2.716 3.013 3.236 1.226 1.324 1.442
w x 10 0.2 5.435 6.029 6.474 2.466 2.661 2.895
( 0.3 8.157 9.045 9.714 3.724 4.013 4.36o

(IN.) 0.4 10.88 12.06 12.96 5.001 5.382 5.839

2 0.1 2.652 2.950 3.185 1.136 1.283

wf x O2 0,2 5.303 5.898 6.30 2.o6.1 2.267 2.561
)0.3 7.953 8.846 9. z.53 3.0o83 3.394 3.86

0.4 io.6o 11-79 12.74 4.102 4.516 5.10.5

-0.1 1.407 1..569 i.,69 10.338 0.594 0.504
"-Qo x 10- 0.2 2.815 3.135 2.537 1.072 1.186 1.004

{ . . . . . 0 . 3 4 .2 2 0 4 .7 0 2 ... R n % i -6 0 1 ", , . .. 5 w
(Lbl 1. , 0.4 5.62.5 6.267 .071 2.125 2.3'5.7 1.996

4 0.1 1.268 1.418 1.141 0.494 o.,543 0.460
P x 10 0.2 2.536 2.821 2.282 0.986 1.084 0.918

(PSI) 0.3 3.803 4.230 3.428 1.475 1.623 1.374
0.4 5.070 5.640 4.564 1.962 2.159 1.829

0.1 0.9711 0.9775 0.9775. 0.8919 0.9133 0.9133
I /L 0.2 0.9701 0.9773 0.9770 0.8870 0.9097 0.9097

f 0.3 6. 0._9765 ý,0.8 i- U..05, . 0.9059
0.. 41 0.9qq 0.9760 0.9760 o0.87591 0.9017 0.9017



TABLE 2 YiELD PRESSURE

YIELD Y;ELP, STRESSES YIELD PRESSURE x 10 PSI
CRITERION FRAME M41DBAY i . D

P - PLASTIC to r INNER OUTER M
POTENTIAL , SURFACE SURFACE SURFACE

M- MAXIMUM h, in.

STRESS Y _Y Y- 0.388 0.1 94 0.388 0.194 0.388 .I i4
. X y . II

ORTHOTROPIC: E - 4.74 x 106- PSI, Es = 6.i4 x 106 PSI. Ef = 7.2 1. 106 PSI

P( 0 = O) 1.0 1.7 0.22 0.3749 0.1702 0.3992 0.1902 0.4325 0.2358

P(uz = 0) 0.22 0.3740 0.!713 0.3979 0.1901 0.4308 0.2.325

P( z 1 0) . . 0.22 0.3740 0.1753 0.432 0.2090 0.4997 0 -03

M 1.0 1.7 1.858 O.6641 2.6•67 1.444
E - Es =5.39'5 10Pl.E:- .xiOPl

ISOTROPIC: E -X PSI. E 7EZ X PSI-

P(Gz = 0) 1.0 1.0 0.22 0.37.53 0.1700 0.4015 0.1921 0.4373 0.2397

P(Gz = 0) 1.7 1.7 0.22 0.3754 0.1705 0.4019 0.1922 0.4383 C.24CG

P(0z 0) , 0.22 0.3754 0.'707 0.4021 0.1922 0.4389 0.240;

P(o z 0) a 0.2210.3754 0.1707 0.o5060 0.2ii.5 0.5054 0.2D.'-

P(az = 0) 1.0 1.0 1.0 1.695 0.7157 1.771 o.871%8 .855 1.o.

P(Gz = 0) 1.7 1.7 1.7 2.882 1.217 3.011 1.482 ;-153 I 7m

M 1.0 !.V0 i.808 o.6303 i.6•,o o-o. 90

M 1.7 1.7 3.0714 1.071 2.736 15,31

Maximum Stress- Axial

"Maximuri Stress - Ci rcurifcreniaei Reproduced From
Best Available Copy

(continued on nexL pae)
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TABLE 2 YIELD PRESSURE

YIELD YIELD STRESSES YIELD PRESSURE x 10. psi
CRITERION FRAME MIDBAY / HIDBAY

P - PLASTIC x 10- PSI INNER OUTER HEDIAN
POTENTVI,'L SURFACE SURFACE SURFACE

MSTRESS __ = h._in.-019 OM

ISOTROPIC: E =Ex =-. Es =Ef = 5.395 x 106 PSI

P(oz.=0) 1.0 1.0 0.22 0.3730 o.17o6 o.3946 0.1897 0.4228 0.2304

P(Oz = 0) 1.7 1.7 0.22 0.3735 0.1708 0.3953 0.1897 0.4242 0.2309

P(oz = 0) 1.0 i.O .O 1.6.56 0.7519 1.701 0.8613 !.753 0.9902

P(0z = 0) 1.7 1.7 1.7 2.814 1.278 2,891 1.461 2.981 1.683

M 1.0 1.0 1.901 0.6825 1..516 0.8423

M 1.7 1.7 3.232 1.16o 2.•576 1.432

"Maximum Stress - Axial

Maximum Stress - Circumferential.
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TABLE 5. TRANSVERSE SHEAR DEFORMATION AND BEAM COLUMN EFFECTS

0, 2 o.oo3689, o 0.0051489)
(7 = O,- - = L- 2-

MIDBAY FRAME MIDBAY FRAME

E w"-'"E -8.255.-- -8.076 -8.261 -8-073

N -8.381 -7.984 -8.870 -8.424

MEMBRANE 0.99753 .006 0.9971 i.006
X 0.9-90 1.O08 0.9979 1.009

4-0. 125 -O.284 -;0. 133 ±0.294
_ BENDING +0.0405 :0.395 +0.092 ±0-455

h MEMBRANE 1.473 1.447 1.47 1.
S.493_ 1-432 1 .570 1.502

N ±0.0570 ±0.128 ±0.0560 ±0.129BENDING ±0.0735 :0. o46 ±0.0685 iO.161

a h INNER 1.535 1.579 1.535 1.580
_ SURFACE 1. 72 . 1.644 1.668

N 1.421 1.324 1.23 1.322"x OUTER 1 .425 1.291 1.507 1.346
SURFACE

ca h INNER 0.8730 1.290 o.8646 1.300
" SURFACE 0.9591 1.404 O.0O60 1.465

N OUTER 1.123 0.7220 1.131 0.7128
SURFACE 1 0140 o.6132 1.091 0.5545

TZMEDI AN 0 O. 1261 0 0.1261

Nx SURFACE 0 0.1283 0 0.1259

INNER 0.1873 0.1517 0.1882 0.1510
SURFACE 0.1766 0.1451 o.1776 0.1384 .

P
_.y MEDIAN 0.1768 0.1771 0.1788 0.1771
Y_ SURFACE G.1775 0.17145 0.1752 0.1708

OUTER IU.1714 0.2217 0.1707 0.2233
SURFACE .0.1780 0.24351 o.16901 0.2505

= 0.1367

=0
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90.

TABLL 3. TRANSVERSE SHEAC, L.FORMATIO, AND BEAM COUW% EFFECTS

v = O. V 0 0.2

MIDBAY FRAME MIDBAY FRAME
Ew 8.194_" - 8.011 - 8.200 - 6.008

N 8.319 - 7.921 - 8.792 - 8.372

- .MEMBRAN E
EBh E 0.9972 i.006 0.9970 . 006

10.999 .007 0.9985 1.008
BENDING + u. 128 ±( 0.292 + 0.136 ± 0.300

0.0385 ± 0.380 + 0.064 0 0.394:• ~MEMBRANE "
-, h M N 1.463 1.436 1.465 1.436

1.483 .423 .557 I .493
x BENDING ± 0.0525 ± 0.128 ± 0.0545 ± 0.129

S0.0730 ± 0.14 _ 0.o730 1 0.150
(¶h INNER 1,525 1.5 9 1.524 1.570

SURFACE 1.562 1.S70 J.636 1.648

s OUTER 1.412 1.313 1.415 1.311
SURFACE 1.416 1.284 1 .40 1.349

h INNER o.8697 1.297 OVID 1.307

N SURFACE o,9614 .i88 0.9351 1.402
x OUTER 1.126 0.7157 1.134 -. 7-063-

SURFACE 1.038 0.6280 1.063 0.6146

xz MEDIAN 0 0.1291 0 0.1290

N SURFACE 0 O.1265 0 0. 1245

INNER 0.1883 U.1517 0. 1893 0.1511
SURFACE 0. 176. 465 0. 1752 0.1424

P MEDIAN 0. 1794 0. 1744 0.1]794 0. 1744

-Y- SURFACE 0.1780 0.1752 0. 1738 0.171l5
y" z OUTER I0O.1717 0.2236 0. 1709 0-2253

___SURFACE O.l]7 0.21413 0.1721

-" pc/P = 1.036 1.036

F= . 1367 , p/p = 1.028 1.023
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